Les clés de la Cryptographie Post-Quantique

Internet

Posté par : JulieM

Publiée le: 21/9/2022 13:00:00

La technologie des ordinateurs quantiques nâ \square en est quâ \square à ses dÃ \otimes buts quâ \square on parle dÃ \otimes jà de cryptographie post-quantique. Loin du buzzword, cette discipline est en passe de devenir un vrai casse-tÃ 2 te dans les secteurs de la cybersÃ 2 curitÃ 2 , des tÃ 2 Communications, des banques ou encore des renseignements dixit MichÃ 2 le Colly â 2 1 2 1 SCC France .

La disruption de lâ \square informatique quantique, avant dâ \square Ã $^{\underline{a}}$ tre une opportunitÃ $^{\underline{c}}$ et une source de progrÃ $^{\underline{a}}$ s dans de nombreux domaines, sera une menace sÃ $^{\underline{c}}$ rieuse pour la sÃ $^{\underline{c}}$ curitÃ $^{\underline{c}}$ des donnÃ $^{\underline{c}}$ es.

Deux disciplines distinctes : la cryptographie quantique vs la cryptographie post-quantique.

Décryptage

La cryptographie quantique

La cryptographie quantique est sortie du domaine théorique depuis quelques années. Si on ignore depuis quand les états-majors militaires ou les services de renseignement la testent, on sait quâ∏elle a été utilisée avec succÃ"s dÃ"s 2004 lors dâ∏une importante transaction financiÃ"re, puis en 2007 avec ID Quantique, spin-off de lâ∏Université de GenÃ"ve pour transmettre les résultats des élections suisses.

La cryptographie quantique utilise les propri $\tilde{\mathbb{A}}$ © t $\tilde{\mathbb{A}}$ ©s de la physique quantique pour $\tilde{\mathbb{A}}$ © tablir des protocoles de cryptographie. Le porteur dâ \square information est alors le photon $\hat{\mathbb{A}}$ \square encod $\tilde{\mathbb{A}}$ \square 0 via la polarisation, sa phase ou encore son amplitude. L $\hat{\mathbb{A}}$ \square 1 exemple le plus connu est la distribution quantique de cl $\tilde{\mathbb{A}}$ 0 s secr $\tilde{\mathbb{A}}$ 1 tes, appel $\tilde{\mathbb{A}}$ 0 e QKD (Quantum Key Distribution) fournissant un canal de communication s $\tilde{\mathbb{A}}$ 0 curis $\tilde{\mathbb{A}}$ 0 entre deux utilisateurs distants pour $\tilde{\mathbb{A}}$ 0 n $\tilde{\mathbb{A}}$ 0 rer une cl $\tilde{\mathbb{A}}$ 0 priv $\tilde{\mathbb{A}}$ 0 e.

La clé ainsi distribuée peut alors être utilisée pour chiffrer et déchiffrer de manière symétrique un message via la technique du masque jetable (somme modulo deux entre le message et la clé), garantissant un niveau de sécurité inconditionnel de bout en bout. Et ce, même face à un adversaire en possession dâ∏un ordinateur quantique.

Cette technique repose sur le fait quâ \square il est impossible de copier lâ \square état dâ \square un systÃ"me quantique (théorÃ"me de non-clonage) et que toute mesure sur un systÃ"me quantique perturbe en général ce dernier, de sorte que la présence dâ \square un espion cherchant à acquérir de lâ \square information sur la clé échangée est alors décelable.

La cryptographie post-quantique

La cryptographie post-quantique désigne des algorithmes de chiffrement conventionnel robustes, face à un attaquant disposant dâ∏un hypothétique ordinateur quantique de grande échelle, avec plusieurs milliers, voire centaines de milliers de qubits logiques.

Pour ce dernier, câ \square est un peu lâ \square histoire du pompier pyromane. Dâ \square un côté les pompiers cherchant à protéger les communications numériques avec des algorithmes résistants. De lâ \square autre, les pyromanes, espérant casser les clés de sécurité publique de type RSA.

Lâ∏∏Algorithme de Shor

En 1994, Peter Shor, un mathématicien américain crée un algorithme capable de factoriser rapidement des nombres entiers. Ã \square lâ \square A©poque, les chercheurs nâ \square avaient pas réussi A créer un seul qubit contrÃ′lable, que lâ \square algorithme provoquait déjà un vif intérêt pour le calcul quantique.

Lâ \square algorithme de Shor permet de casser de nombreux systà mes de cryptographie utilisant des clÃ \otimes s publiques, tel que le protocole RSA massivement utilisÃ \otimes dans le e-commerce. Lâ \square industrie des tÃ \otimes lÃ \otimes coms et de lâ \square informatique seront les premiers impactÃ \otimes s. Cet algorithme ne peut toutefois tourner que sur des ordinateurs quantiques universels avec correction dâ \square erreurs, nÃ \otimes cessitant un nombre non nÃ \otimes gligeable de gubits physiques.

Les conséquences

Lâ \square avÃ"nement de lâ \square ordinateur quantique devrait avoir un rÃ@el impact sur la cryptographie asymÃ@trique à clÃ@ publique, rendant les protections des infrastructures et des applications obsolÃ"tes, si le risque nâ \square est pas anticipÃ@. Les entreprises devront fournir un Ã@norme effort de gestion du changement pouvant aller de 2 Ã 4 ans.

Lâ \square ordinateur quantique constitue un risque potentiel qui peut \tilde{A}^a tre anticip \tilde{A}^c via une migration vers des algorithmes de chiffrement post-quantiques, dont il reste \tilde{A} d \tilde{A}^c finir les standards.

Les systà mes de cryptographie symà © triques à clà © privà © e sont à lâ □ abri de la menace Shor, car la cryptographie quantique est à mà me dâ □ apporter une rà © ponse à cette problà © matique et porte la promesse dâ □ une sà © curità © inconditionnelle.

La Cryptographie Post-Quantique, cânest pour tout de suite?

Lâ \square ordinateur quantique parfait nâ \square existe pas encore que dÃ \bigcirc jà , bon nombre dâ \square algorithmes sont prÃ a ts à y Ã a tre implÃ \bigcirc mentÃ \bigcirc s. Jusquâ \square A prÃ \bigcirc sent, aucune implÃ \bigcirc mentation de ce cÃ \bigcirc lÃ a bre algorithme nâ \square avait pu Ã a tre vÃ \bigcirc rifiÃ \bigcirc e, faute dâ \square outils adaptÃ \bigcirc s. Mais des solutions de cryptographies robustes à lâ \square algorithme de Shor fleurissent dÃ \bigcirc jà , comme CryptoNext Security, spin-off de lâ \square Inria Paris et de la Sorbonne.

Par ailleurs, les premiÃ"res générations dâ \square ordinateurs quantiques ne supporteront probablement pas une implémentation « efficace » de lâ \square algorithme de Shor. Lâ \square algorithme reste toutefois un étendard symbolique pour le logiciel quantique, ainsi quâ \square un étalon pour prouver le passage à lâ \square A©chelle des différentes solutions.